Wednesday, June 8, 2022

Minimum or Maximum

 From a hidden array $A$ of length $N$, Stack constructs an array $B$ of length $N$ such that:

  • For all $i$ $(1 \leq i \leq N)$, $B_i=\max(A_1,A_2,\ldots,A_i)$ or $B_i=\min(A_1,A_2,\ldots,A_i)$.

For the given array $B$ of length $N$, Stack wants you to check whether a possible array $A$ exists or not.

Input Format

  • The first line of input contains a single integer $T$, denoting the number of test cases. The description of $T$ test cases follow.
  • The first line of each test case contains an integer $N$ - the length of the array $B$.
  • The second line of each test case contains $N$ space-separated integers $B_1,B_2,\ldots,B_N$ representing the array $B$.

Output Format

For each test case, output in a single line YES if $A$ exists, otherwise print NO.

You may print each character of the string in uppercase or lowercase (for example, the strings YESyEsyes, and yeS will all be treated as identical).

Constraints

  • $1 \leq T \leq 10^5$
  • $1 \leq N \leq 10^5$
  • $1 \leq B_i \leq 10^5$
  • Sum of $N$ over all test cases does not exceed $10^5$.

Sample Input 1 

3
1
343
4
1 1 2 3
3
1 3 2

Sample Output 1 

YES
YES
NO

Explanation

Test case $1$: The only possible array is $A=[343]$.

Test case $2$: One possible array is $A=[1,1,2,3]$. In this case $B_i = max(A_1, A_2, \ldots, A_i)$ satisfies for all $1 \le i \le 4$.

Test case $3$: It can be proven that there exists no $A$ from which we can obtain the given array $B$.

Sample Input 2 

2
5
1 1 1 1 1 
5
1 2 1 2 1

Sample Output 2 

YES
YES

Explanation

Test case $1$: The only possible array is $A=[1,1,1,1,1]$.

Test case $2$: One possible array is $A=[1,2,1,1,1]$. In this case,

  • $B_1=A_1$
  • $B_2=\max(A_1,A_2)$
  • $B_3=\min(A_1,A_2,A_3)$
  • $B_4=\max(A_1,A_2,A_3,A_4)$
  • $B_5=\min(A_1,A_2,A_3,A_4,A_5)$

No comments:

Post a Comment

मुझे दिल में बसाना आसान नहीं....

पता है Recently i realised की मुझे दिल में बसाना आसान नहीं है बात-बात पे चिढ़ जाती हूं मैं दिल लगा लूं एक बार तो फिर ज़िद पे अड़...